

CENTER FOR EMERGENT MATERIALS NATIONAL SCIENCE FOUNDATION MATERIALS RESEARCH SCIENCE & ENGINEERING CENTER DIVISION OF MATERIALS RESEARCH

ISION OF IVIALERIALS RESEAR

JANUARY 29, 2021

Chris Hammel, Director

La'Tonia Stiner-Jones, Associate Director

cem.osu.edu

Center for Emergent Materials

IRG-1 Creation and C Metal/Magnetic-Insu	Control of Topology a	IRG-2 and Fractionalization in gnetic Materials
Future scientific community Diversity Action Plan Rigorous education research to enhance STEM pathways Outreach K-undergrad	Foundational research and innovation toward emergent materials and phenomena	Seed Science & Faculty Leadership Rigorous external review Reaches broad OSU Mat'ls community Leadership Institute Partner with Industry MRSEC Consortium industry day Alumni Career Series Professional Development Class
Shared User Facilities Characterization, fabrication and Training, education & collabore	•	International Collaborations -center: Univ. Regensburg, Germany,

Training, education & collaboration Equipment investments by OSU, NSF MRI, He liq. Center-center: Univ. Regensburg, Germany, Collaborative Research Center SFB 1277 Max Planck Institute, IIT Madras, Leibniz Institute

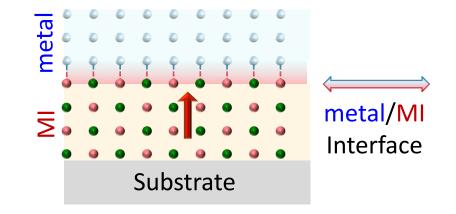
CEM Leadership Team

• Chris Hammel, Director

cem

- La'Tonia Stiner-Jones, Assoc.
 Director
- Jinwoo Hwang, IRG-1 co-leader
- Fengyuan Yang, IRG-1 co-leader
- Maryam Ghazisaeidi, IRG-1

- Yuan-Ming Lu, IRG-2 co-leader
- Jos Heremans, IRG-2 co-leader
- Vicky Doan-Nguyen, IRG-2
- Mohit Randeria, Chair, Evaluation Committee
- Michelle Richard, Director, EHRD



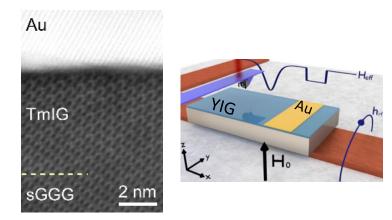
Creation and Understanding of Emergent Magnetism at Metal/MI Interfaces

Theme

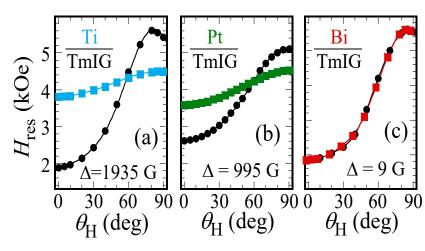
 Interfacial interactions dominate magnetism in metal/MI systems & induce emergent magnetic phenomena

Key questions for metal/MI interfaces

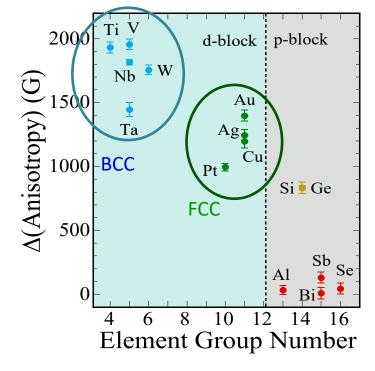
- 1. What determines magnetic behaviors of metal/MI interfaces?
- 2. What are the manifestations of fundamental interfacial interactions?
- 3. How does magnetism depend on atomic structure and symmetry at interface?
- 4. What is the nature of spin-orbit coupling at metal/MI interface?

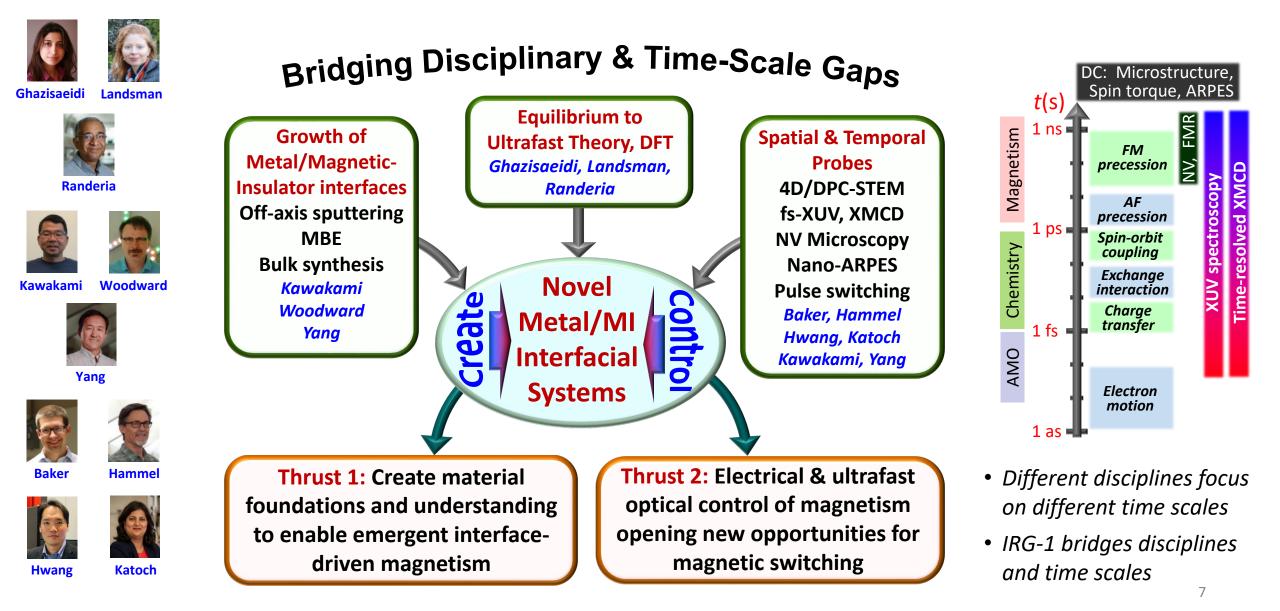


Tunable Interfacial Magnetic Anisotropy in Metal/FMI Interfaces

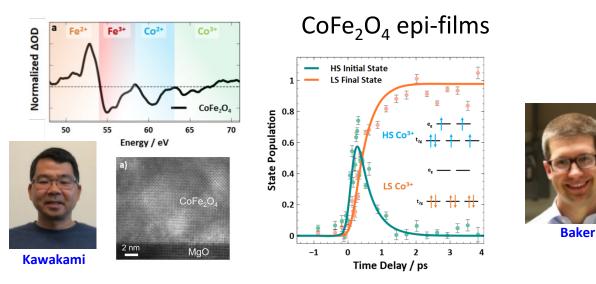

Single-crystal $Tm_3Fe_5O_{12}$ films

down to 1.5 nm; no "dead layer"


- 15 elements on TmIG: interfacial magnetic anisotropy → orbitals
 d-block vs. p-block; BCC vs. FCC
- Microscopy: TEM, FMR imaging


- Magnetic anisotropy:
 - Magneto-crystalline
 - > Dipolar ($4\pi M_s$)
 - Interfacial

- Proposed origin: Interfacial SOC due to broken inversion symmetry
 - Interfacial orbital deformation, crystal & bonding symmetry, etc.


IRG-1: Creation and Control of Metal/Magnetic-Insulator Interfaces

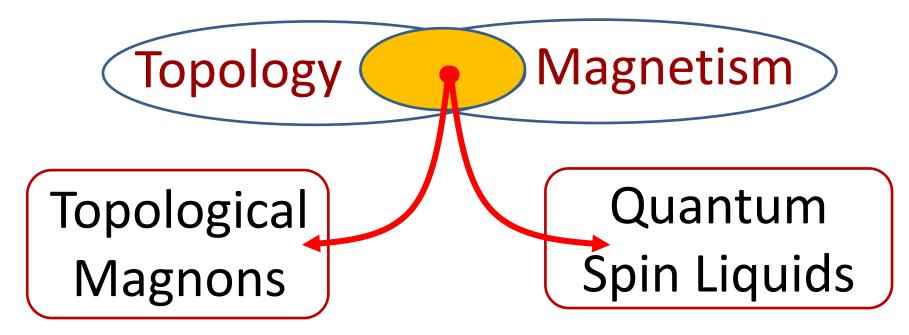
IRG1, Thrust 2 *Transient Spin Crossover: Ultrafast Optical Probe of Charge Transfer & Spin States*

Extreme UV (XUV) spectroscopy

• Londo, ... Kawakami, Baker, 10.26434/chemrxiv.11559531 (2020).

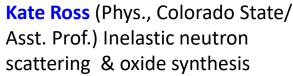
- *Optical pump: excitations of charge transfer & spin crossover*
- Ultrafast XUV probe: *element-specific*, *charge* and *spin* states (Baker)
- Theoretical Modeling of ultrafast optical excitation (Landsman)

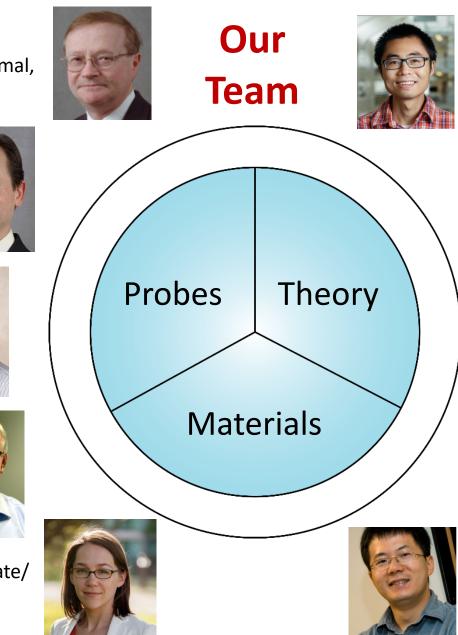
XUV Spectroscopy at OSU


- XUV spectroscopy is ideal for probing interfacial charge & spin dynamics (Baker)
 - **Baker** lab offers all XUV capabilities for IRG-1
- NSF mid-scale infrastructure grant at OSU:
 - National Extreme Ultrafast Science (NEXUS) Facility (Baker: PI; Kawakami: co-PI)
 - NEXUS will expand XUV capabilities

IRG-2: Topology and Fractionalization in Magnetic Materials

- Goal: Extend the topological paradigm to strongly interacting quantum materials
- Challenging scientific problems
 - Topology of magnon bands
 - Fractionalized excitations in quantum spin liquids




Joseph P. Heremans (Mech Aero Eng/Prof.) Thermal, spin and charge transport

Roberto Myers (Mat Sci Eng/Prof.) Space- and time-resolve spin transport

Rolando Valdés Aguilar (Phys./Asst. Prof.) Optical and THz spectroscopy

David McComb (Mat Sci Eng/Prof.) Electron microscopy: STEM, EELS

Yuan-Ming Lu (Phys./Assoc. Prof.) Theory of topological materials

Nandini Trivedi (Phys./Prof.) Theory and Simulation of quantum materials

Brian Skinner (Phys./Asst. Prof) Transport theory

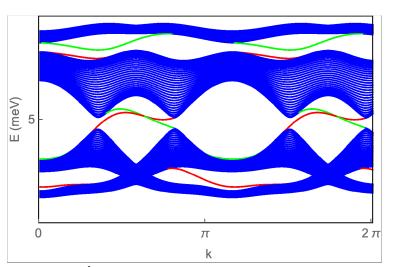
Vicky Doan-Nguyen

Asst. Prof.) Inorganic

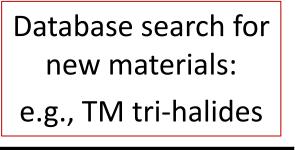
materials synthesis

(Mat Sci Eng/

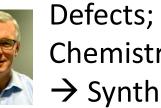
Women: 3 URM: 2 Depts: 4 Rank: 4 Asst. Profs


Publications

Yiying Wu (Chemistry/Prof.) Metal-organic materials synthesis Diversity

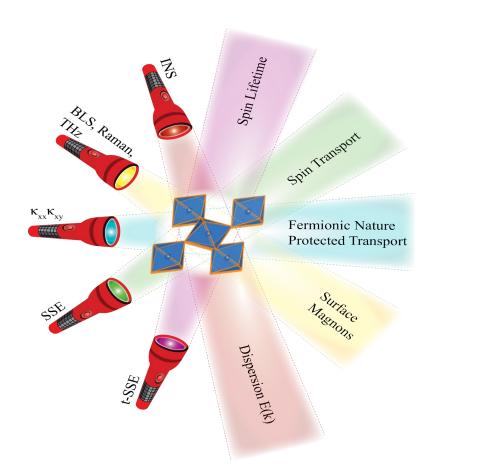


Finding materials with topological magnons

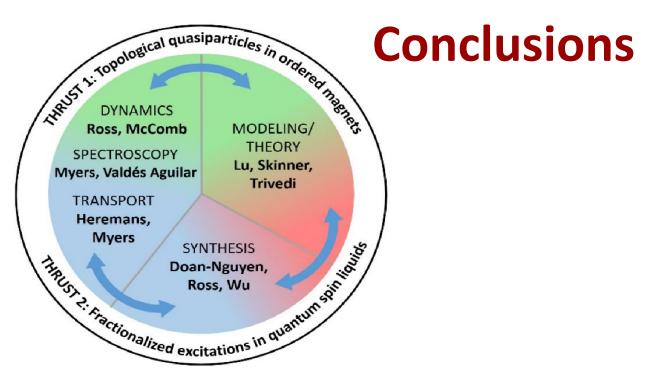

Classification of magnon band topology

Lu and Lu, Phys. Rev. Res. (under review) Hwang, Trivedi, Randeria Phys. Rev. Lett. (under review)

tor



Chemistry \rightarrow Synthesis Use magnetic properties and high transition temperature to down-select


	<i>T</i> _N (°K)	
CrF ₃ MnF ₃ FeF ₃ CoF ₃	80 43 394 460	
Systematic search Investigation of high Tc		

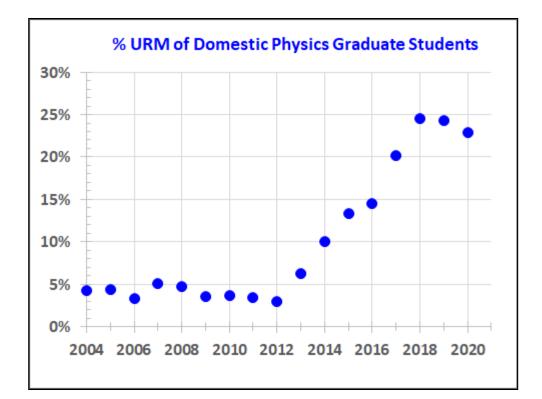
topological magnon materials

Diverse and complementary experimental and theoretical tool-boxes

Challenging scientific problems

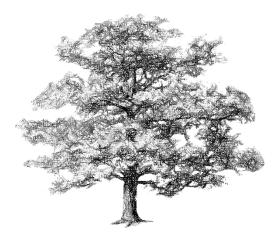
- Topology of magnon bands
- Fractionalized excitations in quantum spin liquids

Diversity Strategic Plan

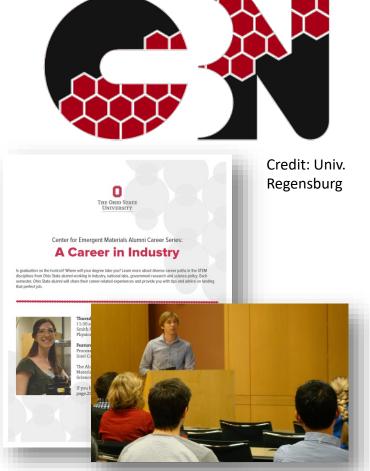

- 1. Improve access to STEM pathways for diverse populations from K-12 through postgraduate study
- Fundamental research to generate new knowledge to advance methods to help students enter STEM.
- 3. Attract, nurture, and promote education and career development for a diverse community
- 4. Ensure an inclusive environment for all
- 5. Diversity Action Plan: concrete, measurable steps toward diverse faculty and enhanced climate

Enhancing Diversity at Graduate Level

- Physics MS-PhD Bridge program to prepare talented URM's for PhD programs
 - Initiated by CEM
 - 6 CEM Faculty on Bridge Program Leadership Team
- 23% of domestic graduate students are URM
- Attractive environment
 - Doubling of **non-Bridge** URM applications to the Physics graduate program
 - Model for other OSU departments developing bridge programs including Astronomy and Chemistry



Seeding excellent science, building teams, supporting emerging leaders


- Bring new scientists, teams and ideas to readiness for external funds
 - Access to broad audience through University funded materials seed programs
 - Both proposed IRGs began as seeded proto-IRGs
- Seed proposals undergo rigorous, externally reviewed grant selection process
 - University funds \rightarrow single investigator and small-team grants
 - CEM seed program \rightarrow build IRGs and develop their leaders
- Leadership Institute: Prepare emerging leaders as they build convergent proto-IRG teams
- University support → leadership development
 NSF seed funds → science

PREM, REU and Collaborations and Industry Interactions

- NSF PREM: Partnership for Research and Education in Materials
 - California State University at Long Beach, a minority serving university
 - Strong link through Bridge program
- Student committee: Internal Advisory Committee
 - Plan and implement student-led POEM workshop
 - Integrates PREM students and faculty
- Industry interactions
 - Professional Development Course, Alumni Career Series
 - Midwest MRSEC Consortium Industry Workshop
- Center-to-center international collaboration
 - Collaborative Research Center SFB 1277 at the University of Regensburg: Emergent Relativistic Effects in Condensed Matter
- REU
 - Held online for six students
 - Two students are continuing

Proposed Center for Emergent Materials

IRG-1 Creation and C Metal/Magnetic-Insu	Control of Topology a	IRG-2 nd Fractionalization in netic Materials
Future scientific community Diversity Action Plan Rigorous education research to enhance STEM pathways Outreach K-undergrad	Foundational research and innovation toward emergent materials	Seed Science & Develop Leadership Rigorous external review Reaches broad OSU Mat'ls community Leadership Institute Partner with Industry

and phenomena

Partner with Industry Midwest MRSEC industry day Alumni Career Series Professional Development Class

Shared User Facilities

Characterization, fabrication and growth Training, education & collaboration Equipment investments by OSU, NSF MRI, He liq.

International Collaborations

Center-center: Univ. Regensburg, Germany, Collaborative Research Center SFB 1277 Max Planck Institute, IIT Madras, Leibniz Institute